A Tutorial on Dimensionality Reduction in Large Claims Data Sets

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Computational Framework for Nonlinear Dimensionality Reduction of Large Data Sets: The Exploratory Inspection Machine (XIM)

In this paper, we present a novel computational framework for nonlinear dimensionality reduction which is specifically suited to process large data sets: the Exploratory Inspection Machine (XIM). XIM introduces a conceptual cross-link between hitherto separate domains of machine learning, namely topographic vector quantization and divergence-based neighbor embedding approaches. There are three ...

متن کامل

Rough and Fuzzy Sets for Dimensionality Reduction

One of the main obstacles facing current machine learning techniques is that of dataset dimensionality. Usually, a redundancy-removing step is carried out beforehand to enable these techniques to be effective. Rough Set Theory (RST) has been used as such a dataset pre-processor with much success, however it is reliant upon a discretized dataset; important information may be lost as a result of ...

متن کامل

Fuzzy-Rough Sets for Descriptive Dimensionality Reduction

One of the main obstacles facing current fuzzy modelling techniques is that of dataset dimensionality. To enable these techniques to be effective, a redundancy-removing step is usually carried out beforehand. Rough Set Theory (RST) has been used as such a dataset pre-processor with much success, however it is reliant upon a crisp dataset; important information may be lost as a result of quantiz...

متن کامل

Data Reduction Techniques for Large Qualitative Data Sets

WORKING WITH DATA COLLECTED through a team effort or in multiple sites can be both challenging and rewarding. The sheer size and complexity of the data set sometimes makes the analysis daunting, cbut a large data set may also yield richer and more useful information. In this chapter, we explore strategies for combining qualitative and quantitative analysis techniques for the analysis of large, ...

متن کامل

Dimensionality Reduction for Data Visualization

Dimensionality reduction is one of the basic operations in the toolbox of data-analysts and designers of machine learning and pattern recognition systems. Given a large set of measured variables but few observations, an obvious idea is to reduce the degrees of freedom in the measurements by representing them with a smaller set of more “condensed” variables. Another reason for reducing the dimen...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Value in Health

سال: 2014

ISSN: 1098-3015

DOI: 10.1016/j.jval.2014.08.1822